Publications of Vassil Kanev

Volumes:

[1] Power sums, Gorenstein algebras, and determinantal loci. Appendix C by Anthony Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics, vol. 1721.
      Springer-Verlag, Berlin,
1999. xxxii+345 pp. [with A. Iarrobino].

 
Articles:

[26] Hurwitz moduli varieties parameterizing Galois covers of an algebraic curve, Preprint

[25] A criterion for extending morphisms from open subsets of smooth fibrations of algebraic varieties, J. Pure Appl. Algebra, 225 (2021), issue 4, 106533. manuscript JPAA

[24] Fiberwise birational regular maps of families of algebraic varieties, Preprint n. 381, Dipartimento di Matematica e Informatica, UniversitÓ di Palermo, November 2017, Preprint.

[23] Irreducible components of Hurwitz spaces parameterizing Galois coverings of curves of arbitrary genus, Pure Appl. Math. Q. 10 (2014), no. 2, 193–222.  Preprint Article

[22] Unirationality of Hurwitz spaces of coverings of degree <= 55. Int. Math. Res. Not. IMRN 2013, no. 13, 3006–3052. Preprint

[21] Polarization type of isogenous Prym-Tyurin varieties. in: Curves and abelian varieties, pp.  147–174, Contemp. Math., 465, Amer. Math. Soc., Providence, RI, 2008. [with H. Lange] Preprint.

[20] Hurwitz spaces of Galois coverings of P1 P1, whose Galois groups are Weyl groups. J. Algebra 305 (2006), no. 1, 442–456. Preprint.

[19] Irreducibility of Hurwitz spaces. Preprint n.241, Dipartimento di Matematica e Informatica, UniversitÓ di Palermo, February 2004, Preprint.

[18] Hurwitz spaces of quadruple coverings of elliptic curves and the moduli space of abelian threefolds. A3(1, Math. Nachr. 278 (2005), no. 1-2, 154–172. Preprint.

[17] Hurwitz spaces of triple coverings of elliptic curves and moduli spaces of abelian threefolds. Ann. Mat. Pura Appl. (4) 183 (2004), no. 3, 333–374. Preprint.

[16] Chordal varieties of Veronese varieties and catalecticant matrices. Algebraic geometry, 9. J. Math. Sci. (New York) 94 (1999), no. 1, 1114–1125. Preprint.

[15] Special line bundles on curves with involution. Math. Z. 222 (1996), no. 2, 213–229. GDZ.

[14] Spectral curves and Prym-Tjurin varieties. I. in:  Abelian varieties (Egloffstein, 1993), pp. 151–198, de Gruyter, Berlin, 1995.

[13] Recovering of curves with involution by extended Prym data. Math. Ann. 299 (1994), no. 3, 391–414. Preprint, GDZ.

[12] Polar covariants of plane cubics and quarticsAdv. Math. 98 (1993), no. 2, 216–301. [with I. Dolgachev].

[11] Spectral curves, simple Lie algebras, and Prym-Tjurin varieties. in:  Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), pp.  627–645, Proc. Sympos. Pure Math., 49, Part 1,
       Amer. Math. Soc., Providence, RI,
1989.

[10] Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces. Ann. Mat. Pura Appl. (4) 154 (1989), 13–48. 

[9]   Hypersurfaces in rational scrolls. C. R. Acad. Bulgare Sci. 41 (1988), no. 11, 23-24.

[8]   Universal properties of Prym varieties of singular curves. C. R. Acad. Bulgare Sci. 41 (1988), no. 10, 25-27. [with L. Katsarkov].

[7]   Principal polarizations of Prym-Tjurin varieties. Compositio Math. 64 (1987), no. 3,  243–270. Numdam.

[6]   Theta divisors of generalized Prym varieties. I. in:  Algebraic geometry, Sitges (Barcelona), 1983, pp. 166–215, Lecture Notes in Math.,  vol. 1124, Springer, Berlin, 1985.

[5]   Intermediate Jacobians of threefolds with a pencil of Del Pezzo surfaces and generalized Prym varieties. C. R. Acad. Bulgare Sci. 36 (1983), 1015–1017.

[4]   A global Torelli theorem for Prym varieties at a general point. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 2, 244–268 (English translation in : Math. USSR-Izv. 20 (1983), 235-258.)

[3]   Quadratic Pfaffian singularities of the theta-divisor of a Prym variety. (Russian) Mat. Zametki 31 (1982), no. 4, 593–600. (English Translation in: Mathematical Notes 31 (1982), 301-305.)

[2]   The Prym mapping is a birational immersion. (Russian) Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 531–533.

[1]   An example of a simply connected surface of general type for which the local Torelli theorem does not hold. (Russian). C. R. Acad. Bulgare Sci. 30 (1977), no. 3, 323–325. [alias V. I. Kynev].