A Classification of Trapezoidal Words

Gabriele Fici

8th International Conference on Words

Prague – 13 September 2011
Infinite Sturmian words have exactly \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

Hence, finite Sturmian words (i.e., balanced words) have at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

However, this property does not characterize balanced words, e.g. \(w = aaabab \) has \(\leq n + 1 \) factors of length \(n \), \(\forall n \geq 0 \), but is not balanced.

Definition

A word having at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \), is called a trapezoidal word.

Thus, trapezoidal words encompass finite Sturmian words.
Infinite Sturmian words have exactly $n + 1$ factors of length n, for every $n \geq 0$.

Hence, finite Sturmian words (i.e., balanced words) have at most $n + 1$ factors of length n, for every $n \geq 0$.

Definition

A word having at most $n + 1$ factors of length n, for every $n \geq 0$, is called a trapezoidal word. Thus, trapezoidal words encompass finite Sturmian words.

Lemma

Sturm \subset Trap
Infinite Sturmian words have exactly \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

Hence, finite Sturmian words (i.e., balanced words) have at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

However, this property does not characterize balanced words, e.g. \(w = aaabab \) has \(\leq n + 1 \) factors of length \(n \), \(\forall n \geq 0 \), but is not balanced.
Infinite Sturmian words have exactly \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

Hence, finite Sturmian words (i.e., balanced words) have at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

However, this property does not characterize balanced words, e.g. \(w = aaabab \) has \(\leq n + 1 \) factors of length \(n \), \(\forall n \geq 0 \), but is not balanced.

Definition

A word having at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \), is called a **trapezoidal word**.
Trapezoidal words

- Infinite Sturmian words have exactly \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

- Hence, finite Sturmian words (i.e., balanced words) have at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \).

- However, this property does not characterize balanced words, e.g. \(w = aabab \) has \(\leq n + 1 \) factors of length \(n \), \(\forall n \geq 0 \), but is not balanced.

Definition

A word having at most \(n + 1 \) factors of length \(n \), for every \(n \geq 0 \), is called a **trapezoidal word**.

Thus, trapezoidal words encompass finite Sturmian words.

Lemma

\(\text{Sturm} \subset \text{Trap} \)
The name comes from the shape of the factor complexity function of these words.

\[f_w(n) = \text{number of distinct factors of length } n \text{ in the word } w. \]

![Diagram of factor complexity function](image)

Figure: The factor complexity \(f_w \) of the trapezoidal word \(aaababa \).
Definition

- **Left special factor** of w if there exist $a \neq b$ such that av and bv are factors of w.

- **Right special factor** of w if there exist $a \neq b$ such that va and vb are factors of w.

- **Bispecial factor** of w if it is both left and right special.
Special Factors

Definition

- \(\nu \) is a left special factor of \(w \) if there exist \(a \neq b \) such that \(av \) and \(bv \) are factors of \(w \).

- \(\nu \) is a right special factor of \(w \) if there exist \(a \neq b \) such that \(va \) and \(vb \) are factors of \(w \).

- \(\nu \) is a bispecial factor of \(w \) if it is both left and right special.

Example

\[
\nu = aaababa
\]

\(ab \) is left special.
Definition

- \(v \) is a **left special factor** of \(w \) if there exist \(a \neq b \) such that \(av \) and \(bv \) are factors of \(w \)

- \(v \) is a **right special factor** of \(w \) if there exist \(a \neq b \) such that \(va \) and \(vb \) are factors of \(w \)

- \(v \) is a **bispecial factor** of \(w \) if it is both left and right special

Example

\[w = aaababa \]

- \(ab \) is left special
- \(aa \) is right special
Definition

- \(v \) is a **left special factor** of \(w \) if there exist \(a \neq b \) such that \(av \) and \(bv \) are factors of \(w \).

- \(v \) is a **right special factor** of \(w \) if there exist \(a \neq b \) such that \(va \) and \(vb \) are factors of \(w \).

- \(v \) is a **bispecial factor** of \(w \) if it is both left and right special.

Example

\[w = aaababa \]

- \(ab \) is left special
- \(aa \) is right special
- \(a \) is bispecial

Gabriele Fici
A Classification of Trapezoidal Words
Lemma

A binary word \(w \) is trapezoidal \(\iff \) \(w \) has at most one right special factor for each length.

Example (\(w = aaababa \))

The right special factors of \(w \) are \(\epsilon, a, aa \).

The left special factors of \(w \) are \(\epsilon, a, ab, aba \).
Lemma

A binary word \(w \) is trapezoidal \(\iff \) \(w \) has at most one right special factor for each length.

Analogously,

Lemma

A binary word \(w \) is trapezoidal \(\iff \) it has at most one left special factor for each length.

Example (\(w = aaababa \))
The right special factors of \(w \) are \(\varepsilon, a, aa \).
The left special factors of \(w \) are \(\varepsilon, a, ab, aba \).
Lemma

A binary word w is trapezoidal \iff w has at most one right special factor for each length.

Analogously,

Lemma

A binary word w is trapezoidal \iff it has at most one left special factor for each length.

Example ($w = aaababa$)

The right special factors of w are ε, a, aa.
The left special factors of w are ε, a, ab, aba.
For a non-empty word w one can define:

- R_w the minimal length for which there are not right special factors in w
- K_w the minimal length of an unrepeated suffix of w

Lemma

A binary word w is trapezoidal $\iff |w| = R_w + K_w$

Example ($w = aaababa$)

One has $K_w = 4$ and $R_w = 3; H_w = 3$ and $L_w = 4$. Hence w is trapezoidal.
For a non-empty word w one can define:

- R_w the minimal length for which there are not right special factors in w
- K_w the minimal length of an unrepeated suffix of w

Lemma

A binary word w is trapezoidal $\iff |w| = R_w + K_w$

Analogously, one can define:

- L_w the minimal length for which there are not left special factors in w
- H_w the minimal length of an unrepeated prefix of w

Lemma

A binary word w is trapezoidal $\iff |w| = L_w + H_w$
Trapezoidal words

For a non-empty word w one can define:

- R_w the minimal length for which there are not right special factors in w
- K_w the minimal length of an unrepeated suffix of w

Lemma

A binary word w is trapezoidal $\iff |w| = R_w + K_w$

Analogously, one can define:

- L_w the minimal length for which there are not left special factors in w
- H_w the minimal length of an unrepeated prefix of w

Lemma

A binary word w is trapezoidal $\iff |w| = L_w + H_w$

Example ($w = aaababa$)

One has $K_w = 4$ and $R_w = 3$; $H_w = 3$ and $L_w = 4$. Hence w is trapezoidal.
Lemma

A finite binary word \(w \) is non-Sturmian if and only if one can write

\[
w = x_1 \cdot aua \cdot x_2 \cdot bub \cdot x_3
\]

with \(x_1, x_2, x_3 \in \Sigma^* \), \(\{a, b\} = \Sigma \) and \(u \) a Sturmian palindrome.

The pair \(f = aua, g = bub \) is the pathological pair of minimal length of \(w \).
Lemma

A finite binary word w is non-Sturmian if and only if one can write

$$w = x_1 \cdot aua \cdot x_2 \cdot bub \cdot x_3$$

with $x_1, x_2, x_3 \in \Sigma^*$, $\{a, b\} = \Sigma$ and u a Sturmian palindrome.

The pair $f = aua$, $g = bub$ is the **pathological pair** of minimal length of w.

Theorem (D’Alessandro, 02)

Let w be a binary non-Sturmian word and z_f, z_g the roots of f and g resp. The word w is trapezoidal if and only if one can write

$$w = pq$$

with $p \in \text{Suff}(\tilde{z}_f^*)$ and $q \in \text{Pref}(z_g^*)$.
A finite binary word w is non-Sturmian if and only if one can write

$$w = x_1 \cdot aua \cdot x_2 \cdot bub \cdot x_3$$

with $x_1, x_2, x_3 \in \Sigma^*$, $\{a, b\} = \Sigma$ and u a Sturmian palindrome.

The pair $f = aua$, $g = bub$ is the pathological pair of minimal length of w.

Let w be a binary non-Sturmian word and z_f, z_g the roots of f and g resp. The word w is trapezoidal if and only if one can write

$$w = pq$$

with $p \in \text{Suff}(\tilde{z}_f^*)$ and $q \in \text{Pref}(z_g^*)$.

Example ($w = aaababa$)

One has $f = aaa$, $g = bab$, $\tilde{z}_f = a$, $z_g = ba$. So w is trapezoidal.
Theorem (D’Alessandro, 02)

Let w be a binary non-Sturmian word and z_f, z_g the roots of f and g resp. The word w is trapezoidal if and only if one can write

$$w = pq$$

with $p \in \text{Suff}(\tilde{z}_f^*)$ and $q \in \text{Pref}(z_g^*)$.

Lemma (Fici, 11)

In the factorization above, the words p and q are Sturmian words.

As a consequence:

Theorem (de Luca, Glen, Zamboni, 08 – Fici, 11)

The following conditions are equivalent:

- w is a Sturmian palindrome
- w is a trapezoidal palindrome
Theorem (D’Alessandro, 02)

Let w be a binary non-Sturmian word and z_f, z_g the roots of f and g resp. The word w is trapezoidal if and only if one can write

$$w = pq$$

with $p \in \text{Suff}(\tilde{z}_f^*)$ and $q \in \text{Pref}(z_g^*)$.

Lemma (Fici, 11)

In the factorization above, the words p and q are Sturmian words.
Theorem (D’Alessandro, 02)

Let \(w \) be a binary non-Sturmian word and \(z_f, z_g \) the roots of \(f \) and \(g \) resp. The word \(w \) is trapezoidal if and only if one can write

\[
w = pq
\]

with \(p \in \text{Suff}(\tilde{z}_f^*) \) and \(q \in \text{Pref}(z_g^*) \).

Lemma (Fici, 11)

In the factorization above, the words \(p \) and \(q \) are Sturmian words.

As a consequence:

Theorem (de Luca, Glen, Zamboni, 08 – Fici, 11)

The following conditions are equivalent:

- \(w \) is a Sturmian palindrome
- \(w \) is a trapezoidal palindrome

Gabriele Fici
A Classification of Trapezoidal Words
Theorem (Mignosi, 91)

The number of Sturmian words of length n is

$$1 + \sum_{i=1}^{n} (n - i + 1)\phi(i)$$

where $\phi(i)$ is the totient Euler function.
The number of Sturmian words of length n is

$$1 + \sum_{i=1}^{n} (n - i + 1)\phi(i)$$

where $\phi(i)$ is the totient Euler function.

The number of non-Sturmian trapezoidal words of length $n \geq 4$ is

$$\sum_{i=0}^{\lfloor (n-4)/2 \rfloor} 2(n - 2i - 3)\phi(i + 2)$$
The number of Sturmian words of length n is

$$1 + \sum_{i=1}^{n} (n - i + 1)\phi(i)$$

where $\phi(i)$ is the totient Euler function.

The number of non-Sturmian trapezoidal words of length $n \geq 4$ is

$$\left\lfloor \frac{(n-4)}{2} \right\rfloor \sum_{i=0}^{\left\lfloor (n-4)/2 \right\rfloor} 2(n - 2i - 3)\phi(i + 2)$$

hence we have an enumerative formula for trapezoidal words.
Definition

A word \(w \) is **closed** if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise \(w \) is **open**.
Open and Closed Words

Definition
A word w is closed if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise w is open.

Example
$w = aabbaa$ is closed; $w = aabbaaa$ is open.
Definition

A word w is closed if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise w is open.

Example

$w = aabbaa$ is closed; $w = aabbaaa$ is open.

Remark

Closed words are also called periodic-like words or complete returns.
Open and Closed Words

Definition

A word w is **closed** if its longest repeated prefix has exactly two occurrences in the word, the second one being a suffix of the word. Otherwise w is **open**.

Example

$w = aabbaa$ is closed; $w = aabbaaa$ is open.

Remark

Closed words are also called *periodic-like words* or *complete returns*.

We want to study open and closed trapezoidal words.
Recall that:

- R_w is the minimal length for which there are not right special factors in w
- K_w is the minimal length of an unrepeated suffix of w
- L_w is the minimal length for which there are not left special factors in w
- H_w is the minimal length of an unrepeated prefix of w

Lemma

Let w be a trapezoidal word.

If w is open, then $H_w = R_w$ and $K_w = L_w$.

If w is closed, then $H_w = K_w$ and $L_w = R_w$.
Recall that:

- R_w is the minimal length for which there are not right special factors in w
- K_w is the minimal length of an unrepeated suffix of w
- L_w is the minimal length for which there are not left special factors in w
- H_w is the minimal length of an unrepeated prefix of w

Lemma

Let w be a trapezoidal word.

If w is open, then $H_w = R_w$ and $K_w = L_w$.
If w is closed, then $H_w = K_w$ and $L_w = R_w$.

Remark

One can have $R_w = K_w = L_w = H_w$ as for example in $w = abba$ (closed) or $w = aaba$ (open).
Proposition

Let w be a trapezoidal word. Then the following conditions are equivalent:

1. w is open;
2. the longest repeated prefix of w is also the longest right special factor of w;
3. the longest repeated suffix of w is also the longest left special factor of w.

Lemma

Every open trapezoidal word is primitive.

Problem

Give a characterization of open Sturmian words.
Proposition

Let w be a trapezoidal word. Then the following conditions are equivalent:

- w is open;
- the longest repeated prefix of w is also the longest right special factor of w;
- the longest repeated suffix of w is also the longest left special factor of w.

Lemma

Every open trapezoidal word is primitive.
Proposition

Let w be a trapezoidal word. Then the following conditions are equivalent:
- w is open;
- the longest repeated prefix of w is also the longest right special factor of w;
- the longest repeated suffix of w is also the longest left special factor of w.

Lemma

Every open trapezoidal word is primitive.

Problem

Give a characterization of open Sturmian words.
Proposition (Bucci, de Luca, De Luca, 09)

Let w be a trapezoidal word. If w is closed, then w is Sturmian.

Lemma

Let w be a closed trapezoidal word and let u be the longest left special factor of w. Then u is also the longest right special factor of w. Moreover, u is a central Sturmian word.

Example

Let $w = aababaaba$. The longest repeated prefix is $aaba$, which is also the longest repeated suffix and does not have internal occurrences. The longest left special factor of w is aba, which is also its longest right special factor and it is a central word.
Proposition (Bucci, de Luca, De Luca, 09)

Let w be a trapezoidal word. If w is closed, then w is Sturmian.

Lemma

Let w be a closed trapezoidal word and let u be the longest left special factor of w. Then u is also the longest right special factor of w. Moreover, u is a central Sturmian word.
Proposition (Bucci, de Luca, De Luca, 09)

Let \(w \) be a trapezoidal word. If \(w \) is closed, then \(w \) is Sturmian.

Lemma

Let \(w \) be a closed trapezoidal word and let \(u \) be the longest left special factor of \(w \). Then \(u \) is also the longest right special factor of \(w \). Moreover, \(u \) is a central Sturmian word.

Example

Let \(w = aababaaba \).

The longest repeated prefix is \(aaba \), which is also the longest repeated suffix and does not have internal occurrences.

The longest left special factor of \(w \) is \(aba \), which is also its longest right special factor and it is a central word.
Proposition (Bucci, de Luca, De Luca, 09)

Let \(w \) be a trapezoidal word. If \(w \) is closed, then \(w \) is Sturmian.

Lemma

Let \(w \) be a closed trapezoidal word and let \(u \) be the longest left special factor of \(w \). Then \(u \) is also the longest right special factor of \(w \). Moreover, \(u \) is a central Sturmian word.

Example

Let \(w = aababaaba \).

The longest repeated prefix is \(aaba \), which is also the longest repeated suffix and does not have internal occurrences.

The longest left special factor of \(w \) is \(aba \), which is also its longest right special factor and it is a central word.
Theorem

Let w be a trapezoidal (Sturmian) palindrome. Then w is closed.
Closed Trapezoidal Words

Theorem

Let w be a trapezoidal (Sturmian) palindrome. Then w is closed.

Corollary

Let w be a trapezoidal (Sturmian) palindrome. Then the longest left special factor of w is also the longest right special factor of w and it is a central Sturmian word.
Venn Diagram for Trapezoidal Words

- Trapezoidal words
- Sturmian words
 - Closed trapezoidal words
 - Trapezoidal palindromes

Gabriele Fici
A Classification of Trapezoidal Words
Some open problems:

- Characterize open Sturmian words
- Give an enumerative formula for open and closed trapezoidal words
- Exploit the dichotomy open/closed to study other classes of words
Thank you!