Combinatorics on Finite Words and Data Structures

Gabriele Fici

Dipartimento di Informatica ed Applicazioni
Università di Salerno (Italy)

Laboratoire I3S - Université de Nice-Sophia Antipolis

13 March 2009
Combinatorics of Words

AMS 2000 Mathematics Subject Classification: 68R15

Number Theory

Discrete Dynamical Systems

Algorithmics

Logic

Probability Theory

Algebra

Bioinformatics

Automata Theory
Combinatorics of Words

Gabriele Fici: Combinatorics of Finite Words and Suffix Automata. Submitted.
A is a finite set of letters (the **alphabet**).

A **finite word** w is an element of A^*.

Its **length** $|w|$ is the number of its letters.

The **empty word** ε has length 0.

Let $w = a_1 a_2 \ldots a_n$ be a word.

- $a_1 \ldots a_i$, with $1 \leq i \leq n$, and ε are the **prefixes** of w.
- $a_j \ldots a_n$, with $1 \leq j \leq n$, and ε are the **suffixes** of w.
- $a_j \ldots a_i$, with $1 \leq i, j \leq n$, and ε are the **factors** of w.
Example

$A = \{a, n, b, c\}, \quad w = \text{banana}$

$|\text{banana}| = 6$

ba is a prefix of banana

$nana$ is a suffix of banana

$a, ba, \varepsilon, \text{banana}$ are factors of banana
Some famous classes of finite words:

- palindromes: $w^R = w$. Ex. *level*.
Some famous classes of finite words:

- **palindromes**: $w^R = w$. Ex. *level*.
- **balanced words** (over two letters): all the factors of the same length have the same number of *a*'s and *b*'s up to 1. Ex. *abaababaabaab*.
Some famous classes of finite words:

- palindromes: $w^R = w$. Ex. *level*.
- balanced words (over two letters): all the factors of the same length have the same number of a’s and b’s up to 1. Ex. *abaababaabaab*.
- differentiable words: words over \{1, 2\} such that their Run Length Encoding is still a word over \{1, 2\}. Ex. 22112122122111
Some famous classes of finite words:

- **palindromes**: $w^R = w$. Ex. *level*.

- **balanced words** (over two letters): all the factors of the same length have the same number of a’s and b’s up to 1. Ex. *abaababaabaab*.

- **differentiable words**: words over \{1, 2\} such that their Run Length Encoding is still a word over \{1, 2\}. Ex. 2211212212211

- **finite prefixes of (right) infinite words**: Thue-Morse, Fibonacci, Kolakoski,...
Some famous classes of finite words:

- palindromes: \(w^R = w \). Ex. \textit{level}.

- balanced words (over two letters): all the factors of the same length have the same number of \(a \)'s and \(b \)'s up to 1. Ex. \textit{abaababaabaab}.

- differentiable words: words over \(\{1, 2\} \) such that their Run Length Encoding is still a word over \(\{1, 2\} \). Ex. \textit{2211212212211}.

- finite prefixes of (right) infinite words: Thue-Morse, Fibonacci, Kolakoski, ...

- many many others.
Some famous classes of finite words:

- palindromes: $w^R = w$. Ex. *level*.
- balanced words (over two letters): all the factors of the same length have the same number of a’s and b’s up to 1. Ex. *abaababaabaab*.
- differentiable words: words over \{1, 2\} such that their Run Length Encoding is still a word over \{1, 2\}. Ex. 2211212212211
- finite prefixes of (right) infinite words: Thue-Morse, Fibonacci, Kolakoski,...
- many many others.

Intersections: 12112112121 is a balanced differentiable palindromic prefix of the Fibonacci word over \{1, 2\}...
What’s the target?

Classify the words through their combinatorial properties.
The suffix automaton

Definition (Blumer et al. 1985 - Crochemore 1986)

The **suffix automaton** of the word w is the minimal deterministic automaton recognizing the suffixes of w.

Example

The suffix automaton of $aabbabb$:
Theorem (Blumer et al. 1985 - Crochemore 1986)

The suffix automaton of a word w over a fixed alphabet A can be built in time and space $O(|w|)$.
One way to build the SA

Build a non-deterministic automaton:

\[w = aabbabb \]

\[
\begin{array}{cccccccc}
0 & a & 1 & a & 2 & b & 3 & b & 4 & a & 5 & b & 6 & b & 7 \\
\end{array}
\]
One way to build the SA

Build a non-deterministic automaton:

\[w = aabbabb \]

Determinize by subset construction:
We associate to each factor \(v \) of \(w \) the set of ending positions of \(v \) in \(w \).

Example

\[
w = aabbabb\\1234567\\\]

\[
\text{Endset}(b) = \{3, 4, 6, 7\}, \text{Endset}(abb) = \text{Endset}(bb) = \{4, 7\}.
\]
We associate to each factor v of w the set of ending positions of v in w.

Example

$$w = aabbabb$$

1234567

$\text{Endset}(b) = \{3, 4, 6, 7\}$, $\text{Endset}(abb) = \text{Endset}(bb) = \{4, 7\}$.

We define on $\text{Fact}(w)$ the equivalence:

$$u \sim v \iff \text{Endset}(u) = \text{Endset}(v)$$
We associate to each factor v of w the set of ending positions of v in w.

Example

$w = aabbabb$

```
1234567
```

$\text{Endset}(b) = \{3, 4, 6, 7\}$, $\text{Endset}(abb) = \text{Endset}(bb) = \{4, 7\}$.

We define on $\text{Fact}(w)$ the equivalence:

$$u \sim v \iff \text{Endset}(u) = \text{Endset}(v)$$

Then $\text{Fact}(w)/\sim$ is the set of states of the SA of w.
The number of states (classes) of the SA is noted $|Q_w|$. The bounds on $|Q_w|$ are well known:

$$|w| + 1 \leq |Q_w| \leq 2|w| - 1$$
The number of states (classes) of the SA is noted $|Q_w|$. The bounds on $|Q_w|$ are well known:

$$|w| + 1 \leq |Q_w| \leq 2|w| - 1$$

The upper bound is reached for $w = ab^{|w|-1}$, with $a \neq b$.

Gabriele Fici

Combinatorics on Finite Words and Data Structures
The number of states (classes) of the SA is noted $|Q_w|$.

The bounds on $|Q_w|$ are well known:

$$|w| + 1 \leq |Q_w| \leq 2|w| - 1$$

The upper bound is reached for $w = ab^{|w|-1}$, with $a \neq b$.

And for the lower bound?
Definition

- \(v \) is a **left special factor** of \(w \) if there exist \(a \neq b \) such that \(av \) and \(bv \) are factors of \(w \).

- \(v \) is a **right special factor** of \(w \) if there exist \(a \neq b \) such that \(va \) and \(vb \) are factors of \(w \).

- \(v \) is a **bispecial factor** of \(w \) if it is both left and right special.

Example: \(w = aabbabb \)

- \(LS = \{ \epsilon, a, b, ab, abb \} \)
- \(RS = \{ \epsilon, a, b \} \)
- \(BIS = \{ \epsilon, a, b \} \)
Special Factors

Definition

- \(v \) is a **left special factor** of \(w \) if there exist \(a \neq b \) such that \(av \) and \(bv \) are factors of \(w \).

- \(v \) is a **right special factor** of \(w \) if there exist \(a \neq b \) such that \(va \) and \(vb \) are factors of \(w \).

- \(v \) is a **bispecial factor** of \(w \) if it is both left and right special.

Example \((w = aabbabb)\)

\[
LS = \{\varepsilon, a, b, ab, abb\}, \quad RS = \{\varepsilon, a, b\}, \quad BIS = \{\varepsilon, a, b\}
\]
The number of states

Theorem (Sciortino, Zamboni 2007)

If $|A| = 2$ then the following conditions are equivalent for a word over A:

- $|Q_w| = |w| + 1$
- Every left special factor of w is a prefix of w
- w is a prefix of a standard sturmian word.

Without restriction on the cardinality of A we have the formula:

Lemma

$$|Q_w| = |w| + 1 + |D(w)|$$

where $D(w)$ is the set of left special factors of w which are not prefixes.
The number of states

Theorem (Sciortino, Zamboni 2007)

If $|A| = 2$ then the following conditions are equivalent for a word over A:

- $|Q_w| = |w| + 1$
- Every left special factor of w is a prefix of w
- w is a prefix of a standard sturmian word.

Without restriction on the cardinality of A we have the formula:

Lemma

$$|Q_w| = |w| + 1 + |D(w)|$$

where $D(w)$ is the set of left special factors of w which are not prefixes.
Characterize the class of words having the property that every left special factor is a prefix, over an arbitrary fixed alphabet A.
The binary case

For binary words we can give a more precise formula:

\[|Q_w| = 2|w| - H_w - P_w \]

*H*_{*w*} is the minimal length of a prefix of *w* occurring only once, *P*_{*w*} is the maximal length of a left special prefix of *w*.
The binary case

For binary words we can give a more precise formula:

\[|Q_w| = 2|w| - H_w - P_w \]

*H*_{*w*} is the minimal length of a prefix of *w* occurring only once, *P*_{*w*} is the maximal length of a left special prefix of *w*.

As a corollary we obtain a new characterization of standard sturmian words:

Corollary

\[w \text{ is a prefix of a stand. sturm. word } \iff |w| = H_w + P_w + 1. \]
Example (\(w = aabbabb\))

\[H_w = 2\] since \(aa\) occurs only once.
\[P_w = 1\] since \(a\) is left special.

\[|Q_w| = 2 \cdot 7 - 2 - 1 = 11\]
What about the number of edges \mathcal{E}_w?
The number of edges

What about the number of edges E_w?

The bounds on E_w are well known:

$$|w| \leq E_w \leq 3|w| - 4$$
The number of edges

What about the number of edges \mathcal{E}_w?

The bounds on \mathcal{E}_w are well known:

$$|w| \leq \mathcal{E}_w \leq 3|w| - 4$$

For binary words we give the formula:

$$\mathcal{E}_w = |Q_w| + |G(w)| - 1$$

$G(w)$ is the union of the set of bispecial factors of w and the set of right special prefixes of w.
Example \((w = aabbabb)\)

\[
G(w) = BIS(w) \cup (\text{Pref}(w) \cap \text{RS}(w)) = \{\varepsilon, a, b\} \cup \{\varepsilon, a\}
\]

\[
|G(w)| = 3 \quad \Rightarrow \quad \varepsilon_w = 11 + 3 - 1 = 13.
\]
Further Research

Problem

Does this approach can be applied to other data structures (factor oracles, suffix tries, suffix arrays, etc.)?